GGSIPU mathmatics 2014

1. For integers $\mathrm{m}, \mathrm{n}, \mathrm{s} \geq 0 \sum_{k}^{n-r+8} C_{k}{ }^{n+r-s} C_{n-k}{ }^{r+k} \mathrm{C}_{m+n}$ is equal to
a $\mathbf{0} \quad$ b $\quad{ }^{n} \mathbf{C}_{\mathrm{m}}{ }^{5} \mathbf{C}_{\pi}$
(1) ${ }^{\mathrm{r}} \mathrm{C}_{\mathrm{m}}{ }^{\mathrm{s}} \mathrm{C}_{\mathrm{n}} \quad \mathrm{d} \quad{ }^{\mathrm{s}} \mathrm{C}_{\mathrm{n}}{ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}}$
2. $\lim _{x \rightarrow \infty} \sin x$ is equal to
a 0
b $\quad \infty$
c exists is finite and non -zero
d Does not exist
3. If $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$, then $x y z$ equals to where, ω is the cube root of unity
$a \quad a+b \quad b \quad a \quad{ }^{2}+b^{2}$
c $a^{3}+b^{3} \quad \& \quad a^{4}+b^{4}$
4. $\lim _{n \rightarrow \infty}\left(\frac{2 n^{3}}{2 n^{2}+3}+\frac{1-5 n^{2}}{5 n+1}\right)$ is equal to
$\begin{array}{lll}\text { a } 0 & b & 1\end{array}$
(c).$/ 5 \quad \mathrm{~d} \quad \infty$
5. $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin \left(x-\frac{\pi}{6}\right)}{\sqrt{3-2 \cos x}}$ is equal to
a 0 b $\frac{1}{\sqrt{3}-2)}$
(c) 1 d ∞
6. $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+3}{2 x^{2}+5}\right)^{8^{x^{2}}+3}$ is equal to
a 0
b 1
/c $e^{8} \quad d e^{-8}$
7. For $\mathrm{y}=\frac{x}{x^{2}-1}, \frac{d^{n} y}{d x^{n}}$ is equal to
a $\frac{n!}{2}\left[\frac{1}{(x+1)^{n}}+\frac{1}{x-1)^{n}}\right]$
b $\frac{(-1)^{n} n}{2}\left[-\frac{1}{x+1)^{n}}--\frac{1}{x-1)^{n}}\right]$
C $\quad \frac{n!}{2}\left[\frac{1}{(x+1)^{n+1}}-\frac{1}{x-1)^{n+1}}\right]$
d $\frac{-1)^{n} n!}{2}\left[-\frac{1}{x+1)^{n+1}}-\frac{1}{x-1)^{n+1}}\right]$
8. Find the slope of the normal to the curve $4 x^{3}+6 x^{2}-5 x y-8 y^{2}+9 x+14=0 T$ the point $-2,3$.
a ∞
b 11
(c) $\frac{9}{2}$
d $\frac{2}{9}$
9. $\lim _{x \rightarrow 0} \frac{\sin 3 x^{2}}{\operatorname{Ln} \cos \left(2 x^{2}-x\right)}$ is equal to
a 0 b
b -6
(c) 1
(d) ∞
10. $\int_{-\pi / 2}^{\pi / 2} \cos x \ln \left(\frac{1+x}{1-x}\right) \mathrm{d} x$ is equal to
a 0 b $\frac{\pi^{2}}{4}\left(-1+\frac{\pi}{2}\right)$
(c) $1 \quad \mathrm{~d} \quad \frac{\pi^{2}}{2}$
11. $\lim _{n \rightarrow \infty}\left(\frac{\sqrt[3]{n!}}{n}\right)$ is equal to
a 0
b 1
(c) -1
$d e^{-1}$
12. $\int_{0}^{\pi} \sqrt{\frac{1+\cos 2 x}{2}} d x$ equals to
a 0
b 2
c 4 d
-2
13. The quadrangle with the vertices $A-3,5,6, B 1,-5,7, C 8,-3,-1$ and $D 4,7,-2$ is a
a square
b rectangle
c parallelelogram d trapezoid
14. $|a|=|b|=5$ and the angle between a and b is $\frac{\pi}{4}$, The area of the triangle constructed on the vectors $a-2 b$ and $3 a+2 b$ is
a 560
b $50 \sqrt{2}$
c $\frac{50}{\sqrt{2}}$
d 100
15. In the triangle with vertices $A 1,-1,2, B 5,-6,2$ and $C(B-1$ find the altitude $n=|B D|$.
(1) 5
b 10
c $5 \sqrt{2}$
d $\frac{10}{\sqrt{2}}$
16. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then a, b and c are in
a AP
b HP
c GP
d Both band c
17. Given lines

$$
\begin{aligned}
& \mathrm{L}_{1}: \frac{x}{-2}=\frac{y-1}{0}=\frac{x+2}{1} \\
& \mathrm{~L}_{2}: \frac{x+1}{0}=\frac{y+1}{2}=\frac{z-2}{-1}
\end{aligned}
$$

Find the distance between the given straight lines.
a
12
b $\frac{\sqrt{21}}{12}$
c $\frac{21}{\sqrt{12}}$
$\frac{12}{\sqrt{21}}$
18. Compute the shortest distance between the circle $x^{2}+y^{2}-10 x-14 y-151=0$ and the point $-7,2$.
a 0
b 1
c 2
d 4
19. On the ellipse $9 x^{2}+25 y^{2}=225$, find the point the distancefrom which to the our focus F_{1} is four times the distance to the other focus F_{2},
a $[-15, \sqrt{63}) \quad\left(\quad\left(-\frac{15}{4}, \frac{\sqrt{63}}{2}\right)\right.$
c $\left(\frac{-15}{4}, \frac{\sqrt{63}}{4}\right)$
d $\left(\frac{-15}{2}, \frac{\sqrt{63}}{2}\right)$
20. On the parabola $y^{2}=64 x$, find the point nearest to the straight line $4 x+3 y-14=0$.
a $-24,9$
b 9,12
c -9,24
d 9, - 24
21. The determinant $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$ is divisible by
a $\quad x-y$
b $x^{2}-y^{2}+x y$
C $x^{2}+x y+y^{2}$
d $x^{2}-x y+y^{2}$
22. The curve $5 x^{2}+12 x y-22 x-12 y-19=0$ is
a ellipse
b parabola
c hypypeoola
d parallel straight lines
23. The derivative of $\mathrm{y}=x^{2^{x}}$ w.r.t. x is

$$
\begin{array}{ll}
\mathrm{a} & x^{2^{x}} 2^{\mathrm{x}}\left(\frac{1}{x}+\operatorname{In} x \ln 2\right) \\
\mathrm{f} & x^{2^{x}} 2^{\mathrm{x}}\left(\frac{1}{x}+\ln x\right)
\end{array} \quad \mathrm{d} \quad x^{2^{x}}\left(\frac{1}{x}+\operatorname{In} x \ln 2\right), 2^{x}\left(\frac{1}{x}+\frac{\ln x}{\operatorname{In} 2}\right) .
$$

24. $\lim _{x \rightarrow \frac{\pi}{2}}\left(\pi-2 x^{\cos x}\right.$ is equal to
a 0 b 1 c e d e
-1
25. $\int_{0}^{1} x \tan ^{-1} \mathrm{xdx}$ is equal to
a $\frac{\pi}{4}$
b $\frac{\pi}{4}+\frac{1}{2}$
C $\frac{\pi}{4}-\frac{1}{2}$
d $\frac{1}{2}$
26. $\int_{0}^{\pi / 3} \frac{\cos \theta}{5-4 \sin 6} \mathrm{~d} \theta$ equal to
a $\frac{1}{4} \log \left(\frac{5}{5+2 \sqrt{3}}\right) \quad$ (t $\quad \frac{1}{4} \log \left(\frac{5}{5-2 \sqrt{3}}\right)$
C $\frac{1}{4} \log \left(\frac{5+2 \sqrt{3}}{5}\right)$ (c $\frac{1}{4} \log \left(\frac{5-2 \sqrt{3}}{5}\right)$
27. $\int \frac{x d x}{1+x)^{3 / 2}}$ is equals to
a $2 \frac{(2+x)}{\sqrt{1+x}}+C \quad$ b $\quad-\frac{2+x)}{\sqrt{1+x}}+C$
C $\frac{3}{2}-\frac{x}{\sqrt{1+x}}+\mathrm{C} \quad$ d $\quad \frac{3}{2} \frac{2+x)}{\sqrt{1+x}}+\mathrm{C}$
28. $\int a^{x} d x$ is equal to
a $\frac{a^{x}}{x \operatorname{tog} a}+C$ b $a^{x} \log a+C$
(c) $\frac{a^{x}}{\log a}+\mathrm{C}$ d $\frac{x a^{x}}{\log a}+\mathrm{C}$
29. $\int_{-\pi}^{\pi}(\cos p x-\sin q x)^{2} d x$, where p and q are integers, is equal to
a $-\pi$
b 0
c π
d 2π
30. The solution of the differential equation $x^{2}-y^{2} d x+2 x y d y=0$, is
a $x^{2}-y^{2}=C x$
b $x^{2}-y^{2}=C y$
c $x^{2}+y^{2}=C x$
$d x^{2}-y^{2}=C y$
31. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}+3 y=-2 x$ is
a c ${ }_{1} \cos \sqrt{3 x}+\mathrm{c}_{2} \sin \sqrt{3 x} \cdot \frac{2}{3} \mathrm{x}^{2}$
b c ${ }_{1} \cos \sqrt{3 x}+\mathrm{c}_{2} \sin \sqrt{3 x}-\frac{4}{5}$
c c ${ }_{1} \cos \sqrt{3 x}+c_{2} \sin \sqrt{3 x}-2 x^{2}+\frac{4}{9}$
d c ${ }_{1} \cos \sqrt{3 x}+\mathrm{c}_{2} \sin \sqrt{3 x}-\frac{2}{3} \mathrm{x}^{2}+\frac{4}{9}$
32. Angles A, B, C of a $\triangle A B C$ are in $A P$ and $b: c=\sqrt{\overline{3}}+\sqrt{2}$, then the $\angle A$ is given by
a 45°
b $60{ }^{\circ}$
c $75{ }^{\circ}$
d 90°
33. The angle between the vectors $a=\hat{i}+2 \hat{j}+2 \widehat{k}$ and $b=\hat{\imath}-2 \hat{j}+2 \widehat{k}$ is
$a \sin { }^{-1} 1 / 9 \quad b \cos \quad-18 / 9$
c $\sin ^{-1}(8 / 9) d$ did $\cos ^{-1}(1 \rho$
34. The straight line $r=\hat{\imath}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}+\lambda \mathbf{2} \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\widehat{\boldsymbol{k}}=\mathbf{4}$ are
a perpendicular to each other
b parallel
c inclined at an angle $60{ }^{\circ}$
d inclined at an angle $45{ }^{\circ}$
35. If two cards are drawn simultaneously from the same set, the probability that atleast one of them will be the ace of hearts is
a $\frac{1}{13} \quad$ b $\frac{1}{26}$ c $\frac{1}{52}$ d $\frac{3}{13}$
36. In a class there are $\mathbf{1 0}$ boys and $\mathbf{8}$ girls. When $\mathbf{3}$ students are selected at random, the probability that $\mathbf{2}$ girls and $\mathbf{1}$ boy are selected is
a $\frac{35}{102} \quad b \quad \frac{15}{102}$
c $\frac{55}{102} \quad$ d $\quad \frac{25}{102}$
37. If M and N are any two events, the probability that exactly one of them occurs is for an event set A, the complement is A^{0}
a $P M+P N \quad-2 P M \cup N$
b $\mathbf{P M}+\mathbf{P N} \quad-\mathbf{P M} \cup N$
c $P M^{0}+\mathbf{P N}{ }^{0}-2 P^{0} \cup N^{0}$
d PM $\cup \mathbf{N}^{0}+\mathbf{P M}{ }^{0} \cup \mathbf{N}$
38. If three squares are chosen an a chess board, the chance that they should be in a diagonal line is
$\begin{array}{llll}\text { a } & \frac{7}{144} & 6 & \frac{5}{744}\end{array}$
(c) $\frac{7}{544} \quad \mathrm{~d} \quad \frac{11}{744}$
39. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$, then
a $A^{2}+7 A-5 /=0$
b $A^{2}-7 A+5 /=0$
c $A^{2}+5 A-7 /=0$
d $A^{2}-5 A+7 /=0$
40. $\int_{0}^{1} \frac{d x}{1+x+x^{2}}$ is equal to
a $\begin{array}{lll}\frac{\pi}{\sqrt{3}} & \text { b } & \frac{\pi}{2 \sqrt{3}}\end{array}$
c $\frac{2 \pi}{3 \sqrt{3}}$
d $\frac{\pi}{3 \sqrt{3}}$
41. A market research group conducted a survey of 1000 consumers and reported that 720 consumers like product. A and 420 consumers like product B. Then, the least number of consumers that must have liked both the products is
42. The polar number $\mathbf{z}=$

X	-5	2	1	4	3
Y	5	8	4	2	10

form of complex $\frac{1-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is
a $\frac{1}{\sqrt{2}}\left(\cos \frac{3 \pi}{12}+i \sin \frac{3 \pi}{12}\right)$
b $\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
c $\sqrt{2}\left(\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}\right)$
d $\frac{1}{\sqrt{2}}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
43. The equation of the plane passing through the points $2,2,1,9,3,6$ and perpendicular to the plane $2 x+6 y+6 z=1$ is
a $2 x-4 y+5 z-9=0$
b $3 x+4 y-z-5=0$
c $3 x+4 y-5 z-9=0$
d $x+4 y-9 z-3=0$
44. The line of regression of y on x for the following data

Is given by
a $Y+0.4 x=1 \quad b \quad y+0.5 x=5$
c $y+0.4 x=7 \quad d \quad y+1.4 x=7$
45. The measure of the chord intercepted by circle $x^{2}+y^{2}=9$ and the line $x-y+2=0$ is
a $\sqrt{28}$
b $2 \sqrt{5}$
c 7
d 5
46. $\tan ^{-1} \sqrt{\overline{3}}-\cot ^{-1}-\sqrt{\overline{3}}$ equals to
$\begin{array}{llllllll}\mathbf{a} & 0 & b & 2 & \sqrt{3} & \text { c } & -\frac{\pi}{2} & d\end{array} \pi$
47. The sum of the deviations of the variates from the arithmetic mean is always
a $\quad+1$
b 0
C $-\mathbf{1}$
d real number
48. A single letter is selected at random from the word "PROBABILITY". The probability that it is a vowel is
a $\frac{8}{11}$
b $\frac{4}{11}$
C $\frac{2}{11}$
d $\frac{3}{11}$
49. An object is observed from three points A, B and C in the same horizontal line passing through the base of the object. The angle of elevation at B is twice and at C thrice that at A. If $A B=a, B C=b$, then the height of the object is
a $\frac{a}{2 b} \sqrt{(a+b(3 b-a}$
b $\frac{a}{2 b} \sqrt{(a-b) 3 b-a)}$
c $\frac{a}{2 b} \sqrt{(a-b} 3 b+\boldsymbol{a}$
d $\frac{a}{2 b} \sqrt{(a+b 3 b+a}$
50. The angle between the lines whose direction ratios are $1,1,2, \sqrt{\mathbf{3}}-1,-\sqrt{\mathbf{3}}-1,4$ is
a $\cos ^{-1}\left(\frac{1}{65}\right)$
b $\frac{\pi}{6}$

C $\frac{\pi}{3}$
d $\frac{\pi}{2}$

